Green Construction Technologies for Civil Infrastructure

Director, Centre for Sustainable Infrastructure and Digital Construction SWIN BUR * NF *

SWINBURNE UNIVERSITY OF TECHNOLOGY

Waste Generated by Construction Sector in Australia

- Total 62 million tons: 44% from Construction and Demolition
- Difficult to dispose waste: concrete, bricks, timber, . .
- Waste disposal expenses: \$2 Billion
 - Manufacturing spent \$1.2 Billion
 - Households spent \$0.6 Billion

Waste Trend in Australia

Waste Trend as a % of Total

Why?

- Construction processes are *inefficient*
- 30% of the new materials are returned as waste
 - temporary works (formworks, timber, . .)
 - damaged items (broken tiles, bricks, .)
 - excessive items (inaccurate estimations)

Inefficiency \Leftrightarrow Productivity

Implications of Lagging Productivity

Year

Lag in Digital and Automation

Automotive, aerospace, ship building and manufacturing industries:

- CAD modelling
- Additive
 manufacturing
 technologies
- Automatic assembly methods

Construction Sites lags behind in:

- Low labour
 efficiency
- High accident rates
- Quality control difficulties

3D Printing: Concrete

- No Formwork
 - Savings of 35 to 60% of the cost
 - Reduce wastage
- Free from rectilinear designs

Material usage efficiencies vs Technology

Modular/Offsite constructions

- Imported from automotive and other manufacturing
- tight inventory control
- Factory-controlled environment
- Many projects in parallel so re-inventory of materials

On-Site Construction Waste

Depletion of Resources and Materials by Construction

- Consumption of 60% of the raw materials
- 35% carbon emissions
- 30% of the global waste

Strategies to Minimise Waste

- 1. Extending the Life of existing Infrastructure
- 2. Waste Reductions in new Constructions
- 3. Use of Recycled Materials

Extending the Life of existing Infrastructure

- Improved knowledge about the infrastructure performance and life time prediction
- Extending the life of infrastructure with strategic maintenance and reduce the need for new construction.

Extending the Life of existing Infrastructure

Other e Resour

Ę

Artificial Intelligence and Machine Learning

T

Integration of data and expert domain knowledge

Knowledge on Deterioration Mechanisms

Waste Reductions in new Constructions

Modular & Off-site construction Digital Automation (3D concrete printing)

Reduce consumption by efficient design & processes

Use Low carbon, low embodied energy materials

Recycling Technologies in Construction

Construction Materials – Carbon Intensive

Timber Manufacture & Loss of Forest

Steel

Glass, Brick

Alternatives to Portland Cement Concrete

- Geopolymer/alkali activation or Blended Cement
 - Fly ash
 - Slag
 - Calcined clay
 - Rice Husk Ash
 - . . .

Conclusions

Increasing pressure on construction will be placed in the future due to:

- Cost pressures
 - Efficiency improvements (materials, labour, waste reductions)
- Emissions from cement is tipped to increase to 40% by 2050
- Waste disposal is becoming expensive